Government College of Engineering Keonjhar

LECTURE NOTES

MATHS-II

VECTOR CALCULUS

Module - III (10 Hours)

Syllabus: Vector differential calculus: vector and scalar functions and fields, Derivatives, Curves, tangents and arc Length, gradient, divergence, curl.

SCALAR- Quantities having only magnitude
VECTOR- Magnitude as well as direction

POSITION VECTOR

Position vector OP at point $P(x, y, z)$

$$
\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \widehat{k}
$$

MAGNITUDE OF VECTOR

$$
r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

UNIT VECTOR

$$
\hat{r}=\frac{\vec{r}}{|\vec{r}|}=\frac{x \hat{\imath}+y \hat{\jmath}+z \widehat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

VECTOR PRODUCT

DOT Product-

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \\
& \qquad \begin{array}{r}
\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \widehat{k} \\
\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \widehat{k}
\end{array}
\end{aligned}
$$

$\hat{\imath} \cdot \hat{\jmath}=\hat{\jmath} \cdot \widehat{k}=\widehat{k} \cdot \hat{\imath}=0, \hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\widehat{k} \cdot \widehat{k}=1$

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

CROSS Product- $\quad \vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta$

$$
\begin{gathered}
\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \widehat{k} \\
\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \widehat{k} \\
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
\end{gathered}
$$

POINT FUNCTION

SCALAR POINT FUNCTION: A scalar point function is a function that assigns a real number (i.e. a scalar) to each point of some region of space.

$$
\phi(x, y, z)=x^{2} y+4 z^{2}+y z
$$

VECTOR POINT FUNCTION: A vector function is a function that assigns a vector to a set of real variables. Its general form is

$$
\vec{F}=F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \widehat{k}
$$

e.g.

$$
\vec{F}=x^{2} y z \hat{\imath}+z^{3} \hat{\jmath}+x y \widehat{k}
$$

GRADIENT, DIVERGENCE AND CURL

DEL OPERATOR

Vector differential operator

$$
\vec{\nabla}=\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}
$$

GRADIENT OF SCALAR FUNCTION $\boldsymbol{\phi}$

The gradient of scalar function is defined as

$$
\operatorname{grad} \phi=\vec{\nabla} \phi=\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\widehat{k} \frac{\partial \phi}{\partial z}
$$

- $\vec{\nabla} \phi$ is normal vector to the surface ϕ

DIVERGENCE OF VECTOR FUNCTION $\overrightarrow{\boldsymbol{F}}$

If $\vec{F}=F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \hat{\boldsymbol{k}}$, then divergence of vector function is defined as

$$
\operatorname{Div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

CURL OF VECTOR FUNCTION $\overrightarrow{\boldsymbol{F}}$

If $\overrightarrow{\boldsymbol{F}}=F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \hat{\boldsymbol{k}}$, then Curl of vector function is defined as

$$
\operatorname{Curl} \vec{F}=\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
$$

Question 1

Prove that
(i) $\vec{\nabla} \boldsymbol{r}^{n}=\boldsymbol{n} \boldsymbol{r}^{n-2} \overrightarrow{\boldsymbol{r}}$
(ii) $\vec{\nabla} \cdot \vec{r}=3$
(iii) $\operatorname{Curl} \operatorname{grad} \phi=\mathbf{0}$

Soln. :

$$
\operatorname{grad} \phi=\vec{\nabla} \phi=\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\widehat{k} \frac{\partial \phi}{\partial z}
$$

(i) $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \widehat{k}$

$$
\begin{gathered}
r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \\
r^{n}=\left(x^{2}+y^{2}+z^{2}\right)^{n / 2} \\
\vec{\nabla} r^{n}=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}\right)^{n / 2} \\
=\hat{\imath} \frac{\partial\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}}{\partial x}+\hat{\jmath} \frac{\partial\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}}{\partial y}+\widehat{k} \frac{\partial\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}}{\partial z} \\
\vec{\nabla} r^{n}=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}\right)^{n / 2} \\
=\hat{\imath} \frac{\partial\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}}{\partial x}+\hat{\jmath} \frac{\partial\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}}{\partial y}+\widehat{k} \frac{\partial\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}}{\partial z} \\
=\frac{n}{2} \cdot 2 x\left(x^{2}+y^{2}+z^{2}\right)^{(n-2) / 2} \hat{\imath}+\frac{n}{2} \cdot 2 y\left(x^{2}+y^{2}+z^{2}\right)^{(n-2) / 2} \hat{\jmath} \\
+\frac{n}{2} \cdot 2 z\left(x^{2}+y^{2}+z^{2}\right)^{(n-2) / 2} \widehat{k} \\
=n\left(x^{2}+y^{2}+z^{2}\right)^{(n-2) / 2}\{x \hat{\imath}+y \hat{\jmath}+z \widehat{k}\} \\
=n r^{n-2} \vec{r}
\end{gathered}
$$

(ii) $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \widehat{\boldsymbol{k}}$

$$
\begin{aligned}
& \operatorname{Div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
& \vec{\nabla} \cdot \vec{r}=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}\right) \cdot x \hat{\imath}+y \hat{\jmath}+z \widehat{k} \\
& =\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z} \\
& =1+1+1=3
\end{aligned}
$$

(iii)

$$
\operatorname{Curl} \vec{F}=\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
\partial & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\frac{\partial z}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
$$

Here, $\overrightarrow{\boldsymbol{F}}=\operatorname{grad} \phi=\overrightarrow{\boldsymbol{V}} \phi=\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\widehat{\boldsymbol{k}} \frac{\partial \phi}{\partial z}$
Curl $\operatorname{grad} \boldsymbol{\phi}=\overrightarrow{\boldsymbol{\nabla}} \times(\vec{\nabla} \boldsymbol{\phi})$

$$
\begin{aligned}
=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}\right. & \left.+\widehat{k} \frac{\partial}{\partial z}\right) \times\left(\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\widehat{k} \frac{\partial \phi}{\partial z}\right) \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right|
\end{aligned}
$$

Curl $\operatorname{grad} \boldsymbol{\phi}=\overrightarrow{\boldsymbol{\nabla}} \times(\overrightarrow{\boldsymbol{\nabla}} \boldsymbol{\phi})$

$$
\begin{aligned}
&=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}\right) \times\left(\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\widehat{k} \frac{\partial \phi}{\partial z}\right) \\
&=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right| \\
&=\hat{\imath}\left(\frac{\partial^{2} \phi}{\partial y \partial z}-\frac{\partial^{2} \phi}{\partial z \partial y}\right)+\hat{\jmath}\left(\frac{\partial^{2} \phi}{\partial z \partial x}-\frac{\partial^{2} \phi}{\partial x \partial z}\right)+\widehat{k}\left(\frac{\partial^{2} \phi}{\partial x \partial y}-\frac{\partial^{2} \phi}{\partial y \partial x}\right) \\
&=0 \hat{\imath}+0 \hat{\jmath}+0 \widehat{k} \quad=0
\end{aligned}
$$

IMPORTANT NOTES

1. Solenoidal Vector

If $\operatorname{div} \vec{F}=\mathbf{0}$

$$
\vec{\nabla} \cdot \vec{F}=\mathbf{0}
$$

Then \vec{F} is called Solenoidal vector

2. Irrotational Vector

If $\operatorname{Curl} \vec{F}=\mathbf{0}$

$$
\vec{\nabla} \times \overrightarrow{\boldsymbol{F}}=\mathbf{0}
$$

Then \vec{F} is called irrotational vector
3. Directional Derivative

Directional derivative of scalar function ϕ at point $P(x, y, z)$ in the direction of unit vector \widehat{a} is

$$
D . D . \text { of } \phi=\frac{d \phi}{d s}=\operatorname{grad} \phi . \widehat{a}
$$

Question 1

Show that

$$
\vec{F}=(x+3 y) \hat{\imath}+(y-2 z) \hat{\jmath}+(x-2 z) \widehat{k}
$$

is solenoidal.
Soln. : If $\operatorname{div} \overrightarrow{\boldsymbol{F}}=\mathbf{0}$

$$
\vec{\nabla} \cdot \vec{F}=\mathbf{0}
$$

Then $\overrightarrow{\boldsymbol{F}}$ is called Solenoidal vector
Given $\quad \overrightarrow{\boldsymbol{F}}=(\boldsymbol{x}+3 y) \hat{\boldsymbol{\imath}}+(\boldsymbol{y}-2 z) \hat{\boldsymbol{\jmath}}+(\boldsymbol{x}-2 z) \widehat{\boldsymbol{k}}$

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{F}=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}\right) \cdot\{(x+3 y) \hat{\imath}+(y-2 z) \hat{\jmath}+(x-2 z) \widehat{k}\} \\
=\frac{\partial(x+3 y)}{\partial x}+\frac{\partial(y-2 z)}{\partial y}+\frac{\partial(x-2 z)}{\partial z} \\
=1+1-2 \\
=0
\end{gathered}
$$

So, $\quad \vec{\nabla} \cdot \vec{F}=0$
Hence $\overrightarrow{\boldsymbol{F}}$ is solenoidal.

Question 2

Determine the value of a, b and \boldsymbol{c} so that
$\vec{F}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \widehat{k}$
is irrotational.
Soln. : If Curl $\overrightarrow{\boldsymbol{F}}=\mathbf{0}$

$$
\vec{\nabla} \times \vec{F}=\mathbf{0}
$$

Then \vec{F} is called irrotational vector

$$
\vec{F}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \widehat{k}
$$

$$
\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+2 y+a z & b x-3 y-z & 4 x+c y+2 z
\end{array}\right|
$$

$$
=\hat{\imath}\left(\frac{\partial(4 x+c y+2 z)}{\partial y}-\frac{\partial(b x-3 y-z)}{\partial z}\right)-\hat{\jmath}\left(\frac{\partial(4 x+c y+2 z)}{\partial x}-\frac{\partial(x+2 y+a z)}{\partial z}\right)
$$

$$
+\widehat{k}\left(\frac{\partial(b x-3 y-z)}{\partial x}-\frac{\partial(x+2 y+a z)}{\partial y}\right)
$$

$$
=\hat{\imath}\left(\frac{\partial(4 x+c y+2 z)}{\partial y}-\frac{\partial(b x-3 y-z)}{\partial z}\right)-\hat{\jmath}\left(\frac{\partial(4 x+c y+2 z)}{\partial x}-\frac{\partial(x+2 y+a z)}{\partial z}\right)
$$

$$
+\widehat{k}\left(\frac{\partial(b x-3 y-z)}{\partial x}-\frac{\partial(x+2 y+a z)}{\partial y}\right)
$$

$$
=(c+1) \hat{\imath}+(-a+4) \hat{\jmath}+(b-2) \widehat{k}
$$

For Irrotational Vector

$$
\begin{gathered}
\vec{\nabla} \times \vec{F}=0 \\
\Rightarrow(c+1) \hat{\imath}+(-a+4) \hat{\jmath}+(b-2) \widehat{k}=0 \hat{\imath}+0 \hat{\jmath}+0 \widehat{k} \\
c+1=0,-a+4=0, b-2=0
\end{gathered}
$$

So, for $a=4, b=2, c=-1, \vec{F}$ is called irrotational vector

Question 3

Find the directional derivative of $\phi=x^{2}-y^{2}+2 z^{2}$ at Point $P(1,2,3)$ in the direction of line $P Q$, where Q is the point $(5,0,4)$.

Soln.: Directional derivative of scalar function ϕ at point $P(x, y, z)$ in the direction of unit vector \widehat{a} is

$$
D . D . \text { of } \phi=\frac{d \phi}{d s}=\operatorname{grad} \phi . \widehat{a}
$$

Step I- Find scalar function (surface)

$$
\phi=x^{2}-y^{2}+2 z^{2}
$$

Step II- Find Gradient of ϕ

$$
\begin{gathered}
\vec{\nabla} \phi=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}\right)\left(x^{2}-y^{2}+2 z^{2}\right) \\
=\hat{\imath} \frac{\partial\left(x^{2}-y^{2}+2 z^{2}\right)}{\partial x}+\hat{\jmath} \frac{\partial\left(x^{2}-y^{2}+2 z^{2}\right)}{\partial y}+\widehat{k} \frac{\partial\left(x^{2}-y^{2}+2 z^{2}\right)}{\partial z}
\end{gathered}
$$

Step I- Find scalar function (surface)

$$
\phi=x^{2}-y^{2}+2 z^{2}
$$

Step II- Find Gradient of $\boldsymbol{\phi}$

$$
\begin{gathered}
\vec{\nabla} \phi=\hat{\imath} \frac{\partial\left(x^{2}-y^{2}+2 z^{2}\right)}{\partial x}+\hat{\jmath} \frac{\partial\left(x^{2}-y^{2}+2 z^{2}\right)}{\partial y}+\widehat{k} \frac{\partial\left(x^{2}-y^{2}+2 z^{2}\right)}{\partial z} \\
g r a d \phi=\vec{\nabla} \phi=2 x \hat{\imath}-2 y \hat{\jmath}+4 z \widehat{k}
\end{gathered}
$$

Step III- Substittute Point $P(1,2,3)$ in $\operatorname{grad\phi }$

$$
\begin{gathered}
\vec{\nabla} \phi=2(1) \hat{\imath}-2(2) \hat{\jmath}+4(3) \widehat{k} \\
\Rightarrow \vec{\nabla} \phi=2 \hat{\imath}-4 \hat{\jmath}+12 \widehat{k}
\end{gathered}
$$

Step IV- Find Unit Vector $\widehat{\boldsymbol{a}}$
Given $\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{P Q}}=\overrightarrow{\boldsymbol{Q}}-\overrightarrow{\boldsymbol{P}}$

$$
=(5 \hat{\imath}+0 \hat{\jmath}+4 \widehat{k})-(\hat{\imath}+2 \hat{\jmath}+3 \widehat{k})
$$

$$
=(4 \hat{\imath}-2 \hat{\jmath}+\widehat{k})
$$

$$
\widehat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{4 \hat{\imath}-2 \hat{\jmath}+\widehat{k}}{\sqrt{4^{2}+2^{2}+1}}=\frac{4 \hat{\imath}-2 \hat{\jmath}+\widehat{k}}{\sqrt{21}}
$$

Step V - Apply definition of Directional derivative

$$
\begin{gathered}
\text { D.D. of } \phi=\operatorname{grad} \phi . \widehat{a} \\
\vec{\nabla} \phi=2 \hat{\imath}-4 \hat{\jmath}+12 \widehat{k} \text { and } \widehat{a}=\frac{4 \hat{\imath}-2 \hat{\jmath}+\widehat{k}}{\sqrt{21}} \\
\operatorname{grad} \phi \cdot \widehat{a}=(2 \hat{\imath}-4 \hat{\jmath}+12 \widehat{k}) \cdot\left(\frac{4 \hat{\imath}-2 \hat{\jmath}+\widehat{k}}{\sqrt{21}}\right) \\
=\frac{2.4+4.2+12.1}{\sqrt{21}}=\frac{28}{\sqrt{21}} \text { Ans. }
\end{gathered}
$$

Question 4

Find the directional derivative of

$$
\phi=x y^{2}+y z^{3} \text { at }
$$

Point $(2,-1,1)$ in the direction of normal to the surface $x \log z-y^{2}=-4$ at $(-1,2,1)$.
Soln.: Directional derivative of scalar function ϕ at point $P(x, y, z)$ in the direction of unit vector \widehat{a} is

$$
D . D . \text { of } \phi=\frac{d \phi}{d s}=\operatorname{grad} \phi . \widehat{a}
$$

Step I- Find scalar function (surface)

$$
\phi=x y^{2}+y z^{3}
$$

Step II- Find Gradient of ϕ

$$
\begin{aligned}
& \vec{\nabla} \phi=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}\right.\left.+\widehat{k} \frac{\partial}{\partial z}\right)\left(x y^{2}+y z^{3}\right) \\
&=\hat{\imath} \frac{\partial\left(x y^{2}+y z^{3}\right)}{\partial x}+\hat{\jmath} \frac{\partial\left(x y^{2}+y z^{3}\right)}{\partial y}+\widehat{k} \frac{\partial\left(x y^{2}+y z^{3}\right)}{\partial z} \\
&=y^{2} \hat{\imath}+\left(2 x y+z^{3}\right) \hat{\jmath}+3 y z^{2} \widehat{k}
\end{aligned}
$$

$$
D . D . \operatorname{of} \phi=\operatorname{grad} \phi . \widehat{a}
$$

Step III- Substittute Point (2, -1, 1) in grad ϕ

$$
\begin{gathered}
\vec{\nabla} \phi=y^{2} \hat{\imath}+\left(2 x y+z^{3}\right) \hat{\jmath}+3 y z^{2} \widehat{k} \\
\Rightarrow \vec{\nabla} \phi=\hat{\imath}-3 \hat{\jmath}-3 \widehat{k}
\end{gathered}
$$

Step IV- Find Unit Vector $\widehat{\boldsymbol{a}}$
Given $\vec{a}=$ normal to the surface $x \log z-y^{2}=-4$ at $(-1,2,1)$.

$$
\begin{gathered}
\text { Let } \begin{array}{c}
\psi=x \log z-y^{2}+4 \\
\vec{a}=\vec{\nabla} \psi \\
=\hat{\imath} \frac{\partial\left(x \log z-y^{2}+4\right)}{\partial x}+\hat{\jmath} \frac{\partial\left(x \log z-y^{2}+4\right)}{\partial y}+\widehat{k} \frac{\partial\left(x \log z-y^{2}+4\right)}{\partial z} \\
\vec{a}=\log z \hat{\imath}-2 y \hat{\jmath}+\frac{x}{z} \widehat{k} \\
\vec{a}=\log z \hat{\imath}-2 y \hat{\jmath}+\frac{x}{z} \widehat{k}
\end{array} .
\end{gathered}
$$

At $(-1,2,1), \quad \vec{a}=-4 \hat{\jmath}-\widehat{k}$

$$
\widehat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{-4 \hat{\jmath}-\widehat{k}}{\sqrt{4^{2}+1}}=\frac{-4 \hat{\jmath}-\widehat{k}}{\sqrt{17}}
$$

Step V - Apply definition of Directional derivative

$$
D . D . \text { of } \phi=\operatorname{grad} \phi . \widehat{a}
$$

$\vec{\nabla} \phi=\hat{\imath}-3 \hat{\jmath}-3 \widehat{k}$ and $\widehat{a}=\frac{-4 \hat{\jmath}-\widehat{k}}{\sqrt{17}}$

$$
\begin{aligned}
& \operatorname{grad} \phi \cdot \widehat{a}=(\hat{\imath}-3 \hat{\jmath}-3 \widehat{k}) \cdot\left(\frac{-4 \hat{\jmath}-\widehat{k}}{\sqrt{17}}\right) \\
= & \frac{(-3) \cdot(-4)+(-3) \cdot(-1)}{\sqrt{17}}=\frac{15}{\sqrt{21}} A n s .
\end{aligned}
$$

CURVES AND ARC LENGTH

1) Arc Length: The arc length of a curve $y=f(x)$ over the interval $[a, b]$ is $L=\int d s$ where, $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} ; y=f(x), \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$

$$
d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} \quad \text { if } \quad x=g(y), \mathrm{c} \leq \mathrm{y} \leq \mathrm{d}
$$

2) Plane curve: Given a smooth curve C defined by the function $\vec{r}(t)=f(t) \hat{\imath}+$ $\boldsymbol{g}(t) \hat{\boldsymbol{j}}$. where t lies within the interval the arc length of C over the interval is $L=$ $\int \sqrt{\left(\frac{d f}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}} d t . \quad$ i.e. ds$=\sqrt{\left(\frac{d f}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}}$
3) Space curve: Given a smooth curve C defined by the function $\overrightarrow{\boldsymbol{r}}(\boldsymbol{t})=\boldsymbol{f}(\boldsymbol{t}) \hat{\boldsymbol{\imath}}+\boldsymbol{g}(\boldsymbol{t}) \hat{\jmath}+$ $h(t) \widehat{k}$. where t lies within the interval the arc length of C over the interval is $L=$ $\int \sqrt{\left(\frac{d f}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}+\left(\frac{d h}{d t}\right)^{2}} d t$.

EXAMPLE 1

Suppose $\vec{r}(t)=\operatorname{cost} \hat{\imath}+\sin t \hat{\jmath}+t \widehat{k}$. What is the distance along the helix from $(1,0,0)$ to $($ cost $, \sin t, t)$.

Sol. We know that this curve is a helix.

$$
\begin{aligned}
\vec{r}(t) & =\cos t \hat{\imath}+\sin t \hat{\jmath}+t \widehat{k} \\
\vec{r}^{\prime(t)} & =-\sin t \hat{\imath}+\cos t \hat{\jmath}+\widehat{k}
\end{aligned}
$$

The distance along the helix from $(1,0,0)$ to $(\cos t, \sin t, t)$

$$
s=\int\left|r^{\prime}(t)\right| d t=\int_{0}^{t} \sqrt{(-\operatorname{Sin} t)^{2}+(\operatorname{Cos} t)^{2}+1} d t=\sqrt{2}[t]_{0}^{t}=\sqrt{2} t
$$

Note: The value of t that gets us distance s along the helix is $t=\frac{s}{\sqrt{2}}$, and so the same curve is given by $\vec{r}(s)=\cos \frac{s}{\sqrt{2}} \hat{\boldsymbol{\imath}}+\sin \frac{s}{\sqrt{2}} \hat{\boldsymbol{\jmath}}+\frac{s}{\sqrt{2}} \widehat{\boldsymbol{k}}$

EXAMPLE 2

Find the length of the cycloid $\vec{r}(t)=\langle t-\sin t, 1-\cos t\rangle$ generated by the unit circle .
Sol. We know that given cycloid is

$$
\vec{r}(t)=(t-\sin t) \hat{\imath}+(1-\cos t) \hat{\jmath}
$$

$f(t)=t-\sin t, \quad g(t)=1-$ cost

$$
\begin{gathered}
\mathrm{L}=\int \sqrt{\left(\frac{d f}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}} \\
\frac{d f}{d t}=1-\operatorname{cost}, \quad \frac{d g}{d t}=\sin t \\
\mathrm{~L}=\int \sqrt{\left(\frac{d f}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}} d t=\int \sqrt{(1-\cos t)^{2}+(\sin t)^{2}} d t
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{L}=\int & \sqrt{(1-\cos t)^{2}+(\sin t)^{2}} d t=\int \sqrt{1-2 \cos t+(-\cos t)^{2}+(\sin t)^{2}} d t \\
& =\int \sqrt{2(1-\cos t)} d t=\sqrt{2} \int \sqrt{2 \sin ^{2}\left(\frac{t}{2}\right)} d t=2 \int \sin \left(\frac{t}{2}\right) d t
\end{aligned}
$$

The cycloid is generated by the unit circle, Thus \boldsymbol{t} will vary from $\mathbf{0}$ to $\mathbf{2 \pi}$

$$
\mathrm{L}=2 \int_{0}^{2 \pi} \sin \left(\frac{t}{2}\right) d t=2\left[-2 \cos \left(\frac{t}{2}\right)\right]_{0}^{2 \pi}=-4[\cos \pi-\cos 0]=-4(-2)=8
$$

Assignment

Evaluate following integral for curve C: $x=t^{2}, y=t, \quad 0 \leq t \leq 1$

$$
I=\int x y d s
$$

- There will be separate question set for Assignments and Practice.

